THE WHEELS AND RAILS PROFILES WEAR INFLUENCE ON RAILWAY VEHICLE BEHAVIOUR

ВЛИЯНИЕ ИЗНОСА ПРОФИЛЕЙ КОЛЕСА И РЕЛЬСА НА ДВИЖЕНИЕ РЕЛЬСОВОГО ВАГОНА

Prof. Chudzikiewicz A., Prof Sowinski B., Dr Szulczyk A,
Faculty of Transport – Warsaw University of Technology, Poland

Abstract: In real exploitation conditions of railway vehicle exist an interaction of wheels and rails with different state of wear. The wear of those surfaces influences also the geometric parameters of each wheel-rail pair. Followed by those are changes of contact forces between wheels and rails and changes in the dynamic behavior of a rail vehicle. To assess the vehicle dynamic behavior a series of simulations were performed in a wide range of traveling speeds. The object under study was conventional passenger car running on the track sections of different quality. Wheel and rail profiles of diverse wear ratio were introduced to calculations. In all the cases track irregularities and wheel and rail profiles have been previously measured. Obtained results such as vehicle accelerations and wheel-rail contact forces were analyzed in amplitude and frequency domain.

Keywords: VEHICLE DYNAMICS, RAIL AND WHEEL WEAR, PROFILE GEOMETRY

1. Introduction

Geometric irregularities of a track such as alignment, cant or gauge, generate excitations in low frequencies of railway vehicle vibrations, commonly less than 30 Hz. This range of frequencies is responsible for dynamic behaviour of the vehicle on tangent track and for a good curving performance at medium or great values of curve radii, and at high speed. Also the rolling surfaces of the wheel and rail strongly influence on the vehicle performance, so that the effects of profiles changes formed by wear should be considered in detail, see e.g. [5, 7]. The wear of these surfaces influences also on the geometric parameters of a kinematic pair of wheel and rail and produces changes of contact forces between wheels and rails in comparison to nominal dimensions [1, 3]. This, in turn, can alter the safety and quality of a vehicle motion. This paper presents some results of investigation that combine measured data (track irregularities, wheel and rail profiles) and wide range of simulation studies. The object under discussion was a passenger car with typical inertial and elastic damping parameters. Simulations were done for 400 m long sections and speed up to 240 km/h. Three track sections of different geometrical imperfections had been analysed, and next their statistical and frequency characteristics have been performed. For each track section, wheel and rail profiles of diverse wear ratio were used.

The experimental studies were performed on selected railway track sections. Measured track geometric irregularities were used as input data for the simulation tests. First of all, wheelset accelerations and wheel-rail contact forces were mainly analysed as vehicle dynamic response to those irregularities. The analysis of obtained results was performed in time and frequency domain as well as statistically. This analysis allowed us to formulate some important features of railway vehicle dynamic behaviour in relation to wheel and rail profiles wear.

2. Mathematical model of railway vehicle – track system

The mathematical model analysed in this paper is treated principally as a multi-body representation of a conventional passenger car. Its mechanical structure, inertial, elastic, and damping characteristics correspond to first class passenger car with MD522 bogies, which is in permanent operation on the Polish Railways [2].

A mathematical model of vehicle motion along a track consists of two interacting subsystems, namely railway car model and track model. Railway car model consists of inertial solids in the form of four wheelsets, two bogie frames (including other parts rigidly attached to the frame), and a body. The bodies are connected by means of massless primary and secondary suspensions whose spring and damping characteristics may be introduced as linear or non-linear. The test includes studying vehicle movement in relation to a reference system that moves along the track axle with the speed of undisturbed vehicle movement. Track model is subordinated to the analysis of dynamics pertaining to low frequencies. In this sense its properties are described by means of geometric irregularities of wave lengths from ca. 3 to 30 m. In the low-frequency model, the track is usually a rigid system, with the nominal layout geometry in the form of straight sections, transition curves, circular arcs, crossings and turnouts. Deviations from the nominal track dimensions are characterised here by means of geometric deviations. For a track of constant nominal dimensions usually four quantities (parameters) are used to describe the deviations [4]. These are as follows: level, alignment, cant, and track gauge deviations. The deviations are also taken into account while calculating geometric contact functions and wheel-rail forces. If the lateral wheel-rail forces are significant, for example on arcs or at turnout diverging tracks, it is justified to introduce elastically moveable rails into the model. In that case, massless or mass equivalent rail models are adopted. The models are supported on spring or spring-damping elements and co-operate with the wheelsets.

Therefore, assuming that the vehicle moves along a rigid track, the mechanical model of the system has 27 degrees of freedom, while the vehicle-elastic track system has 51 degrees of freedom [2]. Wheel-rail contact forces are calculated due to Kalker’s Fastsim [6]. The solution of the system of equations is achieved by means of the generated simulation program [2]. As input nominal data profiles S1002 for wheels and UIC60 for rails are introduced. Lateral rail inclinations are assumed to be 1/40.

3. Geometry characteristics

In this section we will discuss geometric characteristics of the track irregularities (the statistical and spectral values) and rails and wheels profiles (the positions of contact points). The geometrical parameters were obtained using plassar-em120 recording car [4] and are valid for wavelength range from about 3 to 30 m.

The track data chosen to computations, responds to track sections with different level of maintenance (different track quality) are called route I, route II and route III.
When we take into account the amplitudes of irregularities and their standard deviations, then the track section of the best maintenance level is route I, and the worst one is route III (fig. 1 and 2). The statistical parameters situate route II between route I and route III. For the routes under the discussion the standard deviations and the range of irregularities significantly change themselves.

In the frequency domain we can observe a considerable difference between the peaks positions (fig. 3, 4 and 5). They are quite different for the route III. The dominating wave has there a length of over 20 m in contrary to route I and II where dominating waves of irregularities are shorter.

For simulations studies three rails profiles were chosen – a new one, and two worn profiles, as well as three wheels profiles with a different wear ratio (Fig.6, 7).

In order to characterise the system’s geometry we will discuss the position of contact points between rail and wheel as the basis of geometry of contact.

For example, we will demonstrate the positions of wheel-rail contact points on rail surface for the nominal and worn wheel –rail pairs (Fig. 8-9).
4. Simulation results

While demonstrating the results, we will focus on the first wheelset dynamic behaviour. For route I simulations were done in a wide range of speed i.e. from 100 km/h up to 240 km/h. For other routes their state of maintenance does not allow such a high speed, and the simulations were performed from 80 km/h to 160 km/h for the route II and from 60 km/h to 120 km/h for the route III.

In figures 10–12 statistical characteristics of the wheelset motion are shown.

For this route, when we compare differences in results for nominal profile and worn profiles of the wheelset we can state that they are not significant in standard deviations of the first wheelset lateral acceleration and maximum values of these accelerations. The apparent differences occur when we compare the results obtained from simulations with wheel profile signed as 2.

The analysis in frequency domain i.e. power spectral density of acceleration and lateral force does not show differences in peaks location but it should be noticed that for profile-2 the main peak value of power spectral density of lateral force is two times greater than for profile-3 and nominal.

Referring to displacements we can say that for the nominal wheel profile the standard deviation of wheelset lateral displacement increases with the speed up to 140 km/h and next its value becomes nearly constant. Standard deviations of lateral accelerations for all the profiles increase almost linearly vs. speed. The differences between them exist and the results obtained for the nominal pair of wheel-rail profiles are nearly the average of results for worn wheel-rail pairs. The maximum values of wheelset lateral accelerations have very similar features as standard deviations, but for nominal profiles we obtain the highest values.

Examples of forces statistical values are shown in figures 13-15.
Fig. 15. Standard deviation of resultant lateral force acting on wheel

Concluding this section one can say that wear of wheel profiles can significantly change wheel-rail forces level, even on a track with good state of maintenance. It seems that frequency characteristics remain the same (in the sense of spectrum peaks location).

Finishing this paragraph we would like to say some words about results obtained for routes II and III, which were not described in details. In these cases the influence of profiles wear level on the vehicle response is not of prime importance. The track irregularities play the main role there.

Collected results of simulations are shown in figures 16-18. In those figures indices r1, r2, r3 are related to the profiles of rails denoted in figure 6 as rail1, rail2 and rail3, and indices w1, w2 and w3 are referred to wheels profiles.

Fig. 16. Standard deviation of wheelset lateral acceleration for combination of nominal and wear profiles (route II)

This graphs are achieved for 9 combinations of wheel and rail profiles and for three track sections. We can note, that these standard deviations for the II-nd and III-st route seems to be weakly dependent on wheel-rail pair combinations. The reason come from stronger effect of the track imperfections. The dependence on profiles combination is more noticeable for the I-st route. This fact is observed for standard deviations of wheel-rail forces too.

5. **Conclusions**

The type of wheel and rail profiles interacting mutually during vehicle run principally has the substantial meaning for the vehicle dynamic behavior.

Performed calculations for chosen track sections using of the worn wheel and rail profiles point out visible changes of wheelset accelerations and wheel-rail contact forces. The changes are relatively greater on the sections of poorer quality of track maintenance. One can say that wear of wheel profiles can significantly change wheel-rail forces level, specially on a track with good state of maintenance. The frequency characteristics remain very similar in the sense of spectrum peaks location.

Irregularities of the analyzed track sections (in tolerance limits) cause changes of the vehicle response in a greater amount than the wheel or rail profiles wear.

Acknowledgement

The authors wish to acknowledge the financial support provided by Polish Ministry of Science and Higher Education. Project titled: “Monitoring of technical state of construction and evaluation of its lifespan” - Monit

6. **References**