Abstract: Polymer processing methods by plastic deformation in solid phase are borrowed from solid-phase metal forming technology. All the solid-phase polymer processing methods are based on plastic deformation of a polymer under high hydrostatic pressure. In terms of research of the general regularities of relaxation behavior and plastic properties of several polymeric systems were obtained the basic requirements for optimal processing conditions and structure of polymeric multicomponent materials having low shear stability, high ductility and high mechanical performance that meet the requirements of technological process thermoplastic pressure in the solid phase. The experimental results are explained in the context of nonequilibrium thermodynamics and physical mesomechanics obtained by thermomechanical analysis spectroscopy (TMS), X-ray diffraction (XRD) analysis, structural, mechanical, diffusion studies, and other physical and chemical methods for studying the processes of solid-phase extrusion and forging products tribotechnical, structural and other functional purpose for mechanical engineering.

Physical and chemical bases of solid-phase technology for processing of polymeric materials are based on the modern physical concepts of the mechanisms of plastic deformation described in several papers [1-6].

In connection with the problem of creating polymer materials that meet the requirements of the processing of thermoplastics by pressure in solid phase, the Research-Educational Center (REC TSTU-ISMAN "Solid-Phase Technology) investigated the structure, relaxation, diffusion and plastic properties of multicomponent polymer construction materials (including polymer alloys and nanocomposites) on the basis of HDPE, UHMWPE, PA, PC, PSU, PTFE, ABS-copolymer for mechanical engineering. As modifying additives were used other polymers such as carbon mono-and many-wall nanotubes (CNTs) produced by "Nano-Tech-Center, Tambov, micro-and nano-products (TiC, TiB2, etc.) produced by SHS-Technology Institute of Structural Macromechanics and Materials Science (ISMAN, Chernogolovka).

Experimentally established was the fact that the extreme change of physical and chemical properties of polymer alloys for solid-phase technology is associated with the critical meta-stable condition of the polymeric system in the area of small amounts of other polymer materials. Meta-stable condition for incompatible polymeric systems is associated with the processes of spinodal decomposition of binary polymer system during transition of the structure from single-phase to two-phase condition, which is accompanied by the increase in free volume, loosening of the structure and increase in the mobility of various structural units.

The obtained regularities for structure, properties and optimal processing conditions for processing of polymers and composites in SPE are confirmed during the the study of the forging process [2, 3, 6].

The experimental data on the physical and mechanical properties of polymeric alloys under SPE and forging showed a significant increase in strength characteristics of materials. The maximal strength indices for crystallizable polymeric alloys that were achieved during the plastic deformation of premelting, (where a higher organization level in supramolecular structure is created due to the pretransitional physical and chemical processes in the polymer [1-3], and small-crystalline, moveable, mechanically homogeneous structure is formed. For amorphous polymers having virtually disordered supramolecular structures in normal conditions, the highest strength indicators are reached under plastic deformation at lower temperatures, i.e. at high hydrostatic pressure when closing of "pores", "holes" and other structure defects provides the most dense packing of a polymeric material.

where P_0 and n are the coefficients depending on the temperature of SPE, structure of the composite material and geometric parameters of the extrusion zone.

Results of thermomechanical spectroscopy (TMS) research [10, 11] of the molecular topological, relaxation and structural characteristics of ABS, UHMWPE, PSU and nanocomposites after SPE at different speed of extrusion showed that the SPE polymer composites results into complete transformation of polmeric structure from isotropic to anisotropic with a radical change of MMP composites, their degree of crystallinity and other quantitative characteristics of the structure.

The estimation of physical and mechanical properties of composites based on ABS, HDPE, UHMWPE, PTFE, and PSU under monoaxial tensile and shear stress after SPE in comparison with that of the samples obtained by traditional technology (by melting) shows a sharp increase in the strength characteristics (2-2.5 time) of the material in a direction perpendicular to the orientation of SPE.

The obtained regularities for structure, properties and optimal conditions for processing of polymers and composites in SPE are confirmed during the the study of the forging process [2, 3, 6].

The experimental data on the physical and mechanical properties of polymeric alloys after SPE and forging showed a significant increase in strength characteristics of materials. The maximal strength indices for crystallizable polymeric alloys that were achieved during the plastic deformation of premelting, (where a higher organization level in supramolecular structure is created due to the pretransitional physical and chemical processes in the polymer [1-3], and small-crystalline, moveable, mechanically homogeneous structure is formed. For amorphous polymers having virtually disordered supramolecular structures in normal conditions, the highest strength indicators are reached under plastic deformation at lower temperatures, i.e. at high hydrostatic pressure when closing of "pores", "holes" and other structure defects provides the most dense packing of a polymeric material.
For automatic calculation of the working sizes of industrial equipment for the products represented by bodies of rotation, an information system was developed [10].

Conclusions
1. Based on the study of general regularities of the formation of molecular relaxation, structural, mechanical and plastic properties of polymer alloys based on HDPE, UHMWPE, ABS, PTFE and PSU were formulated the main requirements to the optimal conditions of processing and the structure of polymeric multicomponent materials with low shear stability, high ductility and high physicomechanical indicators that meet the requirements of the technological processing of thermoplastics and composites by pressure in the solid phase for mechanical engineering.

2. The conducted researches of technological process of SPE polymer composite yielded the equation that relates pressure of SPE $P_{	ext{comp}}$ and the deformation of material during extrusion $ln \lambda_{\text{max}}$, as well as analytical expressions for estimating the optimal processing temperature in solid phase for the amorphous - crystalline and glassy polymers and composites.

3. Was proved the possibility of regulating the structure and properties of composite materials by penetration of small additions of polymeric substances, titanium carbide, titanium diboride, and carbon nanomaterial introduction into the polymer matrix. The polymeric composite materials with improved performance were obtained.

4. As a result of analyzing the volume shrinkage during solid forging was developed an engineering method of calculating working dimensions of tooling for polymers using the equation of state for the material in solid phase.

* This work was supported by the Russian Ministry of Education as a part of the analytical departmental Programme for Development of Scientific Potential of Universities, project code RNP.2.2.1.1.5207; Ministry of Education project " Research of composite materials in order to create theoretical and technological foundations of knowledge-based solid-phase technology. A fundamental research " in 2008-2010, under the Federal Program " Research and scientific -pedagogical cadres Innovative Russia" for 2009-2013, the Civil Code number P1485 and the U.S. Civilian Research and Development Foundation (CRDF) in accordance with the Russian-American program "Basic Research and Higher Education"(RBHE), project "REC-019 Solid Phase Technology"

List of sources used:
7. Baronin, G.S. Physico-chemical and technological bases of processing polymeric materials in the solid phase. Some
new research methods developed to create new technology / G.S. Baronin, Y.M. Radko, M.L. Kerber // Chemical industry today.- 2003.- № 10.-p.35-43.